Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Virus Evol ; 10(1): veae011, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38435712

RESUMEN

Avian influenza viruses (AIVs) of the H9N2 subtype have become widespread in Western Africa since their first detection in 2017 in Burkina Faso. However, the genetic characteristics and diffusion patterns of the H9N2 virus remain poorly understood in Western Africa, mainly due to limited surveillance activities. In addition, Mali, a country considered to play an important role in the epidemiology of AIVs in the region, lacks more comprehensive data on the genetic characteristics of these viruses, especially the H9N2 subtype. To better understand the genetic characteristics and spatio-temporal dynamics of H9N2 virus within this region, we carried out a comprehensive genetic characterization of H9N2 viruses collected through active surveillance in live bird markets in Mali between 2021 and 2022. We also performed a continuous phylogeographic analysis to unravel the dispersal history of H9N2 lineages between Northern and Western Africa. The identified Malian H9N2 virus belonged to the G1 lineage, similar to viruses circulating in both Western and Northern Africa, and possessed multiple molecular markers associated with an increased potential for zoonotic transmission and virulence. Notably, some Malian strains carried the R-S-N-R motif at their cleavage site, mainly observed in H9N2 strains in Asia. Our continuous phylogeographic analysis revealed a single and significant long-distance lineage dispersal event of the H9N2 virus to Western Africa, likely to have originated from Morocco in 2015, shaping the westward diffusion of the H9N2 virus. Our study highlights the need for long-term surveillance of H9N2 viruses in poultry populations in Western Africa, which is crucial for a better understanding of virus evolution and effective management against potential zoonotic AIV strain emergence.

2.
Virus Evol ; 10(1): veae012, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38476867

RESUMEN

Peste des petits ruminants virus (PPRV) causes a highly infectious disease affecting mainly goats and sheep in large parts of Africa, Asia, and the Middle East and has an important impact on the global economy and food security. Full genome sequencing of PPRV strains has proved to be critical to increasing our understanding of PPR epidemiology and to inform the ongoing global efforts for its eradication. However, the number of full PPRV genomes published is still limited and with a heavy bias towards recent samples and genetic Lineage IV (LIV), which is only one of the four existing PPRV lineages. Here, we generated genome sequences for twenty-five recent (2010-6) and seven historical (1972-99) PPRV samples, focusing mainly on Lineage II (LII) in West Africa. This provided the first opportunity to compare the evolutionary pressures and history between the globally dominant PPRV genetic LIV and LII, which is endemic in West Africa. Phylogenomic analysis showed that the relationship between PPRV LII strains was complex and supported the extensive transboundary circulation of the virus within West Africa. In contrast, LIV sequences were clearly separated per region, with strains from West and Central Africa branched as a sister clade to all other LIV sequences, suggesting that this lineage also has an African origin. Estimates of the time to the most recent common ancestor place the divergence of modern LII and LIV strains in the 1960s-80s, suggesting that this period was particularly important for the diversification and spread of PPRV globally. Phylogenetic relationships among historical samples from LI, LII, and LIII and with more recent samples point towards a high genetic diversity for all these lineages in Africa until the 1970s-80s and possible bottleneck events shaping PPRV's evolution during this period. Molecular evolution analyses show that strains belonging to LII and LIV have evolved under different selection pressures. Differences in codon usage and adaptative selection pressures were observed in all viral genes between the two lineages. Our results confirm that comparative genomic analyses can provide new insights into PPRV's evolutionary history and molecular epidemiology. However, PPRV genome sequencing efforts must be ramped up to increase the resolution of such studies for their use in the development of efficient PPR control and surveillance strategies.

3.
Viruses ; 15(6)2023 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-37376688

RESUMEN

In 2021, amidst the COVID-19 pandemic and global food insecurity, the Nigerian poultry sector was exposed to the highly pathogenic avian influenza (HPAI) virus and its economic challenges. Between 2021 and 2022, HPAI caused 467 outbreaks reported in 31 of the 37 administrative regions in Nigeria. In this study, we characterized the genomes of 97 influenza A viruses of the subtypes H5N1, H5N2, and H5N8, which were identified in different agro-ecological zones and farms during the 2021-2022 epidemic. The phylogenetic analysis of the HA genes showed a widespread distribution of the H5Nx clade 2.3.4.4b and similarity with the HPAI H5Nx viruses that have been detected in Europe since late 2020. The topology of the phylogenetic trees indicated the occurrence of several independent introductions of the virus into the country, followed by a regional evolution of the virus that was most probably linked to its persistent circulation in West African territories. Additional evidence of the evolutionary potential of the HPAI viruses circulating in this region is the identification in this study of a putative H5N1/H9N2 reassortant virus in a mixed-species commercial poultry farm. Our data confirm Nigeria as a crucial hotspot for HPAI virus introduction from the Eurasian territories and reveal a dynamic pattern of avian influenza virus evolution within the Nigerian poultry population.


Asunto(s)
COVID-19 , Subtipo H5N1 del Virus de la Influenza A , Subtipo H5N2 del Virus de la Influenza A , Subtipo H9N2 del Virus de la Influenza A , Gripe Aviar , Gripe Humana , Enfermedades de las Aves de Corral , Animales , Humanos , Aves de Corral , Gripe Aviar/epidemiología , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N2 del Virus de la Influenza A/genética , Subtipo H9N2 del Virus de la Influenza A/genética , Filogenia , Nigeria/epidemiología , Pandemias , COVID-19/epidemiología , Aves , Gripe Humana/epidemiología , Enfermedades de las Aves de Corral/epidemiología
4.
J Occup Environ Hyg ; 20(5-6): 219-225, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37084403

RESUMEN

The occurrence of antibiotic-resistant bacteria (ARB) in wastewater treatment plants (WWTPs) has become an occupational and environmental concern. WWTPs are engineered systems that treat wastewater to meet public health standards before release into the environment. The residuals, as either effluent or solids, are then discharged or beneficially recycled into the environment. Since these wastes contain a diverse array of microorganisms, some of which are resistant to commonly used antibiotics, there is a potential for these organisms to spread in the environment via residual recycling and effluent discharge. Human infections with ARB are increasing, and it is not well known how the interaction between humans and the environment plays a role in this process. WWTP workers, who are on the front lines, may come into direct contact with materials containing these microbes. This study aimed to determine the number of ARB present in both air and sewage sludges in a WWTP using nonselective media supplemented with two antibiotics (ciprofloxacin and azithromycin). The densities of total heterotrophic bacteria, ciprofloxacin-resistant bacteria, and azithromycin-resistant bacteria were 7.82 × 105 - 4.7 × 109, 7.87 × 103 - 1.05 × 108, and 2.27 × 105 - 1.16 × 109 CFU/g, respectively. The prevalence [(concentration on medium with antibiotics/concentration on medium without antibiotics) × 100] of ciprofloxacin-resistant bacteria in treated sludge was twice as low as in digested sludge and approximately three times lower than in raw sludge. For azithromycin, the prevalence of resistant bacteria in treated sludge was about the same in digested and nearly twice lower than in raw sludge. Despite a marked reduction in the mean prevalence of resistant bacteria in dewatered treated sludge for both antibiotics, these differences were not significant. The highest prevalence of antibiotic resistance was observed for azithromycin. Similarly, the prevalence of airborne azithromycin-resistant bacteria inside the belt filter press room (BFPR) was nearly seven times higher than the prevalence of airborne ciprofloxacin-resistant bacteria. These concentrations of ARB were not negligible and may represent an exposure pathway for some workers in WWTPs.


Asunto(s)
Aguas del Alcantarillado , Purificación del Agua , Humanos , Aguas del Alcantarillado/microbiología , Azitromicina/farmacología , Eliminación de Residuos Líquidos , Genes Bacterianos , Ciprofloxacina/farmacología , Antagonistas de Receptores de Angiotensina , Inhibidores de la Enzima Convertidora de Angiotensina , Bacterias/genética , Antibacterianos/farmacología
5.
Viruses ; 14(9)2022 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-36146708

RESUMEN

Since 2006, the poultry population in Burkina Faso has been seriously hit by different waves of Highly Pathogenic Avian Influenza (HPAI) H5N1 epizootics. In December 2021, three distinct regions of Burkina Faso, namely, Gomboussougou, Bonyollo, and Koubri, detected HPAI H5N1 viruses in poultry. Whole genome characterization and statistical phylogenetic approaches were applied to shed light on the potential origin of these viruses and estimate the time of virus emergence. Our results revealed that the HPAI H5N1 viruses reported in the three affected regions of Burkina Faso cluster together within clade 2.3.4.4b, and are closely related to HPAI H5N1 viruses identified in Nigeria and Niger in the period 2021-2022, except for the PA gene, which clusters with H9N2 viruses of the zoonotic G1 lineage collected in West Africa between 2017 and 2020. These reassortant viruses possess several mutations that may be associated with an increased zoonotic potential. Although it is difficult to ascertain where and when the reassortment event occurred, the emergence of a H5N1/H9N2 reassortant virus in a vulnerable region, such as West Africa, raises concerns about its possible impact on animal and human health. These findings also highlight the risk that West Africa may become a new hotspot for the emergence of new genotypes of HPAI viruses.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Subtipo H9N2 del Virus de la Influenza A , Gripe Aviar , Animales , Burkina Faso/epidemiología , Pollos , Humanos , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H9N2 del Virus de la Influenza A/genética , Gripe Aviar/epidemiología , Filogenia , Aves de Corral , Virus Reordenados/genética
7.
Transbound Emerg Dis ; 68(5): 2842-2852, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34323385

RESUMEN

African swine fever (ASF) has been endemic in sub-Saharan Africa since the 1960s. Following its introduction in Senegal, in 1957, ASF steadily progressed through West Africa, reaching Burkina Faso in 2003, and later Mali in 2016. Despite the heavy burden of disease on pig production, little information is available on the genetic diversity of Africa swine fever virus (ASFV) in Burkina Faso, Mali and Senegal. Here, we used real-time PCR ASFV to detect the ASFV genome in samples collected between 1989 and 2016, in Burkina Faso, Mali and Senegal, and conventional approaches for isolate characterization. The C-terminal end of the p72 protein gene, the full E183L gene and the central variable region (CVR) within the B602L gene in ASFV genome were sequenced and compared to publicly available sequences. ASFV genome was found in 27 samples, 19 from Burkina Faso, three from Mali and five from Senegal. The phylogenetic analyses showed that all viruses belong to genotype I, with the ASFVs from Burkina Faso and Mali grouping with genotype Ia and ASFV serogroup 4, and those from Senegal with genotype Ib and the ASFV serogroup 1. The analysis of the CVR tetrameric tandem repeat sequences (TRS) showed four TRS variants in Burkina Faso, two in Senegal and one in Mali. The three countries did not share any common TRS, and all CVRs of this study differed from previously reported CVRs in West Africa, except for Senegal. Three of the five isolates from Senegal fully matched with the CVR, p72 and p54 sequences from ASFV IC96 collected during the 1996 ASF outbreak in Ivory Coast. This study shows the spread of the same ASFV strains across countries, highlighting the importance of continuous monitoring of ASFV isolates. It also calls for an urgent need to establish a regional plan for the control and eradication of ASF in West Africa.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Enfermedades de los Porcinos , Fiebre Porcina Africana/epidemiología , Virus de la Fiebre Porcina Africana/genética , Animales , Burkina Faso/epidemiología , Variación Genética , Genotipo , Malí/epidemiología , Filogenia , Senegal/epidemiología , Análisis de Secuencia de ADN/veterinaria , Porcinos
8.
Curr Environ Health Rep ; 8(3): 223-234, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34101152

RESUMEN

PURPOSE OF REVIEW: The purpose of this review is to consolidate exposure assessment methods for occupational research on engineered nanomaterials (ENMs) published within the past 5 years (2015-2020). RECENT FINDINGS: The three ENMs that generated the highest volume of new research include titanium dioxide, graphene, and aluminum oxide. A multi-metric approach, using both online and offline instruments and analyses, has been found to be a useful method to characterize ENM workplace exposures and was commonly used in the recently published literature. Particle number concentration was the most common online exposure metric used, followed by the metrics of mass and surface area. There are currently no consensus methods for offline analyses of most ENMs. Researchers generally used gravimetric or elemental analyses for carbonaceous nanomaterials, titanium dioxide, and other nanometals, but there was little overlap between other ENM materials reviewed. Using biological markers of exposure, such as urinary oxidative stress biomarkers, as an indication of chronic exposure may also be useful for some ENMs and should be further researched. Generally, similar online instrumentation and offline electron microscopy methods were used for all ENMs. However, this consistency was not observed for offline mass analysis methods within specific ENMs. Consolidation of the most recent methods and results of exposure assessments within this broad material category can guide researchers toward future areas of study. Establishing consensus methods of exposure assessment for each individual ENM is crucial to characterizing workplace exposures, pooling data to fully understand their associated risks, and developing useful occupational exposure limits.


Asunto(s)
Nanoestructuras , Exposición Profesional , Humanos , Nanoestructuras/toxicidad , Exposición Profesional/efectos adversos , Exposición Profesional/análisis , Lugar de Trabajo
9.
Transbound Emerg Dis ; 68(6): 3107-3113, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33704888

RESUMEN

Peste des petits ruminants (PPR) is a highly contagious disease of small ruminants. The causal agent, PPR virus (PPRV), is classified into four genetically distinct lineages. Lineage IV, originally from Asia, has shown a unique capacity to spread across Asia, the Middle East and Africa. Recent studies have reported its presence in two West African countries: Nigeria and Niger. Animals are frequently exchanged between Mali and Niger, which could allow the virus to enter and progress in Mali and to other West African countries. Here, PPRV samples were collected from sick goats between 2014 and 2017 in both Mali and in Senegal, on the border with Mali. Partial PPRV nucleoprotein gene was sequenced to identify the genetic lineage of the strains. Our results showed that lineage IV was present in south-eastern Mali in 2017. This is currently the furthest West the lineage has been detected in West Africa. Surprisingly, we identified the persistence at least until 2014 of the supposedly extinct lineage I in two regions of Mali, Segou and Sikasso. Most PPRV sequences obtained in this study belonged to lineage II, which is dominant in West Africa. Phylogenetic analyses showed a close relationship between sequences obtained at the border between Senegal and Mali, supporting the hypothesis of an important movement of the virus between the two countries. Understanding the movement of animals between these countries, where the livestock trade is not fully controlled, is very important in the design of efficient control strategies to combat this devastating disease.


Asunto(s)
Enfermedades de las Cabras , Peste de los Pequeños Rumiantes , Virus de la Peste de los Pequeños Rumiantes , África Occidental/epidemiología , Animales , Enfermedades de las Cabras/epidemiología , Cabras , Nigeria , Peste de los Pequeños Rumiantes/epidemiología , Virus de la Peste de los Pequeños Rumiantes/genética , Filogenia
10.
PLoS Pathog ; 17(3): e1009397, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33735294

RESUMEN

Peste des petits ruminants (PPR) is a deadly viral disease that mainly affects small domestic ruminants. This disease threaten global food security and rural economy but its control is complicated notably because of extensive, poorly monitored animal movements in infected regions. Here we combined the largest PPR virus genetic and animal mobility network data ever collected in a single region to improve our understanding of PPR endemic transmission dynamics in West African countries. Phylogenetic analyses identified the presence of multiple PPRV genetic clades that may be considered as part of different transmission networks evolving in parallel in West Africa. A strong correlation was found between virus genetic distance and network-related distances. Viruses sampled within the same mobility communities are significantly more likely to belong to the same genetic clade. These results provide evidence for the importance of animal mobility in PPR transmission in the region. Some nodes of the network were associated with PPRV sequences belonging to different clades, representing potential "hotspots" for PPR circulation. Our results suggest that combining genetic and mobility network data could help identifying sites that are key for virus entrance and spread in specific areas. Such information could enhance our capacity to develop locally adapted control and surveillance strategies, using among other risk factors, information on animal mobility.


Asunto(s)
Migración Animal , Peste de los Pequeños Rumiantes/transmisión , Virus de la Peste de los Pequeños Rumiantes , África Occidental , Animales , Cabras , Peste de los Pequeños Rumiantes/epidemiología , Virus de la Peste de los Pequeños Rumiantes/genética , Ovinos
11.
Med Trop Sante Int ; 1(4)2021 12 31.
Artículo en Francés | MEDLINE | ID: mdl-35685855

RESUMEN

Objective: The objective of this study was to describe the epidemiological and clinical aspects as well as the therapeutic methods of mycetomical lesions. Material and Methods: This was a longitudinal retrospective study, which included all patients treated for mycetoma from January 2016 to December 2018 including two years of recruitment and one year of monitoring (2019). The study concerned 19 patients who were hospitalized and treated in the department of surgery. Results: Patients represented 2.3% of hospitalizations and consisted of 11 males and 8 females with an average age of 38 years with extremes of 15 - 70 years, and an average time between the onset of symptoms and presentation to the hospital of 10 years (range 1 - 40 years). Eight livestock breeders and seven farmers were concerned, 14 of whom have started the disease after trauma. The foot was involved in 13 patients. Twelve suffered from osteoarticular lesions. Black grains were present in 16 cases attributed to Madurella sp. We performed 12 amputations, six carcinological ablation to which specific local treatments were added (thin skin graft in two patients, fasciocutaneous flap in one patient and directed healing in the others) and local treatment in the last case. Conclusion: Mycetoma should be discussed and diagnosed at an early stage in predisposed patients particularly in farmers and breeders. Prevention is necessary; it is based on wound disinfection and wearing safety shoes.


Asunto(s)
Escarabajos , Madurella , Micetoma , Adolescente , Adulto , Animales , Niño , Preescolar , Femenino , Hospitales , Humanos , Lactante , Masculino , Malí , Micetoma/epidemiología , Estudios Retrospectivos , Adulto Joven
12.
J Occup Environ Hyg ; 17(4): 193-205, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32134702

RESUMEN

The duties of home healthcare workers are extensive. One important task that is frequently performed by home healthcare workers is administration of nebulized medications, which may lead to significant dermal exposure. In this simulation study conducted in an aerosol exposure chamber, we administered a surrogate of nebulizer-delivered medications (dispersed sodium chloride, NaCl) to a patient mannequin. We measured the amount of NaCl deposited on the exposed surface of the home healthcare worker mannequin, which represented the exposed skin of a home healthcare worker. Factors such as distance and position of the home healthcare worker, room airflow rate and patient's inspiratory rate were varied to determine their effects on dermal exposure. There was a 2.78% reduction in dermal deposition for every centimeter the home healthcare worker moved away from the patient. Increasing the room's air exchange rate by one air change per hour increased dermal deposition by about 2.93%, possibly due to a decrease in near field particle settling. For every 10-degrees of arc the home healthcare worker is positioned from the left side of the patient toward the right and thus moving into the ventilation airflow direction, dermal deposition increased by about 4.61%. An increase in the patient's inspiratory rate from 15-30 L/min resulted in an average of 14.06% reduction in dermal deposition for the home healthcare worker, reflecting a relative increase in the aerosol fraction inhaled by the patient. The findings of this study elucidate the interactions among factors that contribute to dermal exposure to aerosolized pharmaceuticals administered by home healthcare workers. The results presented in this paper will help develop recommendations on mitigating the health risks related to dermal exposure of home healthcare workers.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/etiología , Servicios de Atención de Salud a Domicilio , Exposición Profesional/análisis , Piel/efectos de los fármacos , Humanos , Nebulizadores y Vaporizadores
13.
Front Vet Sci ; 6: 392, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31803763

RESUMEN

In Mali, small ruminants (SRs) are an important means for enhanced livelihood through income generation, especially for women and youth. Unfortunately, opportunities for livestock farmers to tap into these resources for economic growth are hindered by high burden of endemic diseases such as peste des petits ruminants (PPR). A key component for the control of PPR is vaccination of SRs. However, low participation of farmers to vaccination was identified by stakeholders of the livestock value chains as a key constraint to successful vaccination programs. This study was implemented in the framework of a project which aimed at improving the domestic ruminant livestock value chains in Mali by upscaling proven interventions in animal health, feeds and feeding and livestock marketing. The objectives of the study were to review the context of livestock vaccination in Mali and evaluate the impact of innovation platforms (IP) as a means for engaging stakeholders in the vaccination process. Desk review, key informant interviews (KII) and net-mapping were used to understand the context of livestock vaccination, while vaccination coverage and sero-monitoring together with group interviews were used to measure the impact of the intervention. IPs were created in 24 communes in three regions: 15 IPs in Sikasso, 4 IPs in Mopti and 5 IPs in Timbuktu. They developed work plans and implemented activities focusing on improving interaction among key vaccine chain delivery stakeholders such as farmers, private veterinarians, vaccine manufacturers, local leaders and public veterinary services; involving them in the planning, implementation and evaluation of vaccination programs and fostering knowledge sharing, communication and capacity building. After 2 years of implementation of IPs, vaccination coverage for SRs increased significantly in target communes. During the first year, seroprevalence rate for PPR increased from 57% (CI95: 54-60%) at baseline to 70% (CI95: 67-73%) post-vaccination in Sikasso region, while in Mopti region, seroprevalence increased from 51% (CI95: 47-55%) at baseline to 57% (CI85: 53-61%) post-vaccination. Stakeholder engagement in the vaccination process through facilitated IPs was successful in fostering participation of farmers to vaccination. However, a sustainable vaccination strategy for Mali would benefit from consolidating the IP model, supported by Government investment to strengthen and adjust the underlying public-private-partnership.

15.
Front Vet Sci ; 6: 275, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31497607

RESUMEN

Peste des Petits Ruminants (PPR) is a viral disease affecting predominantly small ruminants. Due to its transboundary nature, regional coordination of control strategies will be key to the success of the on-going PPR eradication campaign. Here, we aimed at exploring the extent of transboundary movement of PPR in West Africa using phylogenetic analyses based on partial viral gene sequences. We collected samples and obtained partial nucleoprotein gene sequence from PPR-infected small ruminants across countries within West Africa. This new sequence data was combined with publically available data from the region to perform phylogenetic analyses. A total of fifty-five sequences were obtained in a region still poorly sampled. Phylogenetic analyses showed that the majority of virus sequences obtained in this study were placed within genetic clusters regrouping samples from multiple West African countries. Some of these clusters contained samples from countries sharing borders. In other cases, clusters grouped samples from very distant countries. Our results suggest extensive and recurrent transboundary movements of PPR within West Africa, supporting the need for a regional coordinated strategy for PPR surveillance and control in the region. Simple phylogenetic analyses based on readily available data can provide information on PPR transboundary dynamics and, therefore, could contribute to improve control strategies. On-going and future projects dedicated to PPR should include extensive genetic characterization and phylogenetic analyses of circulating viral strains in their effort to support the campaign for global eradication of the disease.

16.
Scand J Work Environ Health ; 45(3): 217-238, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30653633

RESUMEN

Objectives The widespread application of nano-enabled products and the increasing likelihood for workplace exposures make understanding engineered nanomaterial (ENM) effects in exposed workers a public and occupational health priority. The aim of this study was to report on the current state of knowledge on possible adverse effects induced by ENM in humans to determine the toxicological profile of each type of ENM and potential biomarkers for early detection of such effects in workers. Methods A systematic review of human studies and epidemiological investigations of exposed workers relative to the possible adverse effects for the most widely used ENM was performed through searches of major scientific databases including Web of Science, Scopus, and PubMed. Results Twenty-seven studies were identified. Most of the epidemiological investigations were cross-sectional. The review found limited evidence of adverse effects in workers exposed to the most commonly used ENM. However, some biological alterations are suggestive for possible adverse impacts. The primary targets of some ENM exposures were the respiratory and cardiovascular systems. Changes in biomarker levels compared with controls were also observed; however, limited exposure data and the relatively short period since the first exposure may have influenced the incidence of adverse effects found in epidemiological studies. Conclusions There is a need for longitudinal epidemiologic investigations with clear exposure characterizations for various ENM to discover potential adverse health effects and identify possible indicators of early biological alterations. In this state of uncertainty, precautionary controls for each ENM are warranted while further study of potential health effects continues.


Asunto(s)
Estudios Epidemiológicos , Nanoestructuras/efectos adversos , Exposición Profesional/efectos adversos , Salud Laboral , Humanos , Medición de Riesgo
18.
Am J Trop Med Hyg ; 96(6): 1341-1345, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28719259

RESUMEN

AbstractCrimean-Congo hemorrhagic fever is a tick-borne disease caused by the arbovirus Crimean-Congo hemorrhagic fever virus (CCHFV, family Bunyaviridae, genus Nairovirus). CCHFV can cause a severe hemorrhagic fever with high-case fatality rates in humans. CCHFV has a wide geographic range and has been described in around 30 countries in the Middle East, Asia, Europe, and Africa including Mali and neighboring countries. To date, little is known about the prevalence rates of CCHFV in Mali. Here, using banked bovine serum samples from across the country, we describe the results of a seroepidemiological study for CCHFV aimed at identifying regions of circulation in Mali. In total, 1,074 serum samples were tested by a modified in-house CCHFV-IgG-enzyme-linked immunosorbent assay (ELISA) with confirmatory testing by commercial ELISA and immunofluorescence assay. Overall, 66% of samples tested were positive for CCHFV-specific IgG antibodies. Regional seroprevalence rates ranged from 15% to 95% and seemed to correlate with cattle density. Our results demonstrate that CCHFV prevalence is high in many regions in Mali and suggest that CCHFV surveillance should be established.


Asunto(s)
Enfermedades de los Bovinos/epidemiología , Bovinos/virología , Virus de la Fiebre Hemorrágica de Crimea-Congo/aislamiento & purificación , Fiebre Hemorrágica de Crimea/epidemiología , Fiebre Hemorrágica de Crimea/veterinaria , Animales , Anticuerpos Antivirales/sangre , Enfermedades de los Bovinos/virología , Técnica del Anticuerpo Fluorescente , Fiebre Hemorrágica de Crimea/virología , Inmunoglobulina G/sangre , Malí/epidemiología , Reproducibilidad de los Resultados , Estudios Seroepidemiológicos , Garrapatas/virología
19.
One Health ; 3: 41-43, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28616502

RESUMEN

A high percentage (up to 90%) of dromedary camels in the Middle East as well as eastern and central Africa have antibodies to Middle East respiratory syndrome coronavirus (MERS-CoV). Here we report comparably high positivity of MERS-CoV antibodies in dromedary camels from northern Mali. This extends the range of MERS-CoV further west in Africa than reported to date and cautions that MERS-CoV should be considered in cases of severe respiratory disease in the region.

20.
BMC Vet Res ; 12(1): 145, 2016 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-27439708

RESUMEN

BACKGROUND: Bovine tuberculosis (BTB) is a contagious, debilitating human and animal disease caused by Mycobacterium bovis, a member of the Mycobacterium tuberculosis complex. The study objective were to estimate the frequency of BTB, examine genetic diversity of the M. bovis population in cattle from five regions in Mali and to determine whether M. bovis is involved in active tuberculosis (TB) in humans. Samples from suspected lesions on cattle at the slaughterhouses were collected. Mycobacterial smear, culture confirmation, and spoligotyping were used for diagnosis and species identification. Mycobacterium DNA from TB patients was spoligotyped to identify M. bovis. RESULTS: In total, 675 cattle have been examined for lesions in the five regions of Mali. Out of 675 cattle, 79 specimens presented lesions and then examined for the presence of M. bovis. Thus, 19 (24.1 %) were identified as M. bovis; eight (10.1 %) were non-tuberculous Mycobacterium (NTM). Nineteen spoligotype patterns were identified among 79 samples with five novel patterns. One case of M. bovis (spoligotype pattern SB0300) was identified among 67 TB patients. CONCLUSION: This study estimates a relatively true proportion of BTB in the regions of Mali and reveals new spoligotype patterns.


Asunto(s)
Variación Genética , Mycobacterium bovis/genética , Tuberculosis Bovina/epidemiología , Tuberculosis Bovina/microbiología , Tuberculosis/epidemiología , Tuberculosis/microbiología , Animales , Técnicas de Tipificación Bacteriana , Bovinos , Humanos , Malí/epidemiología , Repeticiones de Minisatélite/genética , Mycobacterium bovis/aislamiento & purificación , Tuberculosis/patología , Tuberculosis Bovina/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...